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Continuum analysis of an avalanche model for solar flares
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We investigate the continuum limit of a class of self-organized critical lattice models for solar flares. Such
models differ from the classical numerical sandpile model in their formulation of stability criteria in terms of
the curvature of the nodal field, and are known to belong to a different universality class. A fourth-order
nonlinear hyperdiffusion equation is reverse engineered from the discrete model’s redistribution rule. A dy-
namical renormalization-group analysis of the equation yields scaling exponents that compare favorably with
those measured in the discrete lattice model within the relevant spectral range dictated by the sizes of the
domain and the lattice grid. We argue that the fourth-order nonlinear diffusion equation that models the
behavior of the discrete model in the continuum limit is, in fact, compatible with magnetohydrodynamics
~MHD! of the flaring phenomenon in the regime of strong magnetic field and the effective magnetic diffusivity
characteristic of strong MHD turbulence.

DOI: 10.1103/PhysRevE.66.056111 PACS number~s!: 05.65.1b, 05.40.2a, 95.30.Qd, 96.60.Rd
ed
b
y
a

s
ly
o

rg
t t

tw

th

s
o
co
e

et
o
th

s
nd

t
or
er
c
b
u
t
in
o

in

ased

re.

by
gh-
for

’s
ed,
re-

,
d
n

n

ture
ned
atter

va-
I. INTRODUCTION: SOLAR FLARES AS AVALANCHES

With the so-called solar neutrino problem now turn
over to particle physicists, coronal heating remains argua
the grand unsolved problem of the contemporary solar ph
ics. There is general agreement that the energy source m
taining the temperature of the coronal plasma in exces
106 K against radiative and conductive losses is, ultimate
the mechanical energy associated with convective fluid m
tions. However, the manner in which this mechanical ene
is converted to thermal energy within the corona has ye
be elucidated.

One very attractive mechanism was proposed nearly
decades ago by Parker~e.g., Refs.@1–3#!. In his picture, the
mechanical energy is first stored as magnetic energy wi
photospherically anchored coronal magnetic structures~the
‘‘coronal loops’’ ubiquitous in the corona!, and subsequently
transferred to the plasma by reconnection mediatedin situ
dissipation of the magnetic field. The general idea is illu
trated in Fig. 1. The left panel shows a ‘‘straightened’’ cor
nal loop, where the upper and lower bounding surfaces
respond to the two regions of the solar photosphere wh
the loop is anchored. At photospheric levels, the magn
field is too weak to resist the stochastic horizontal fluid m
tions associated with convection and granulation, so that
footpoints of the initially uniform magnetic field lines (t
5t0) are randomly shuffled. After many flow turnover time
(t5t1), the field lines end up complexly wrapped arou
one another. As the coronal field continuously attempts
relax to a force-free state in response to this boundary f
ing, the current sheets inexorably build up in regions wh
field lines kink around one another. In view of the high ele
trical conductivity of the coronal plasma, these sheets
come very thin and pervaded by very intense electrical c
rents, which eventually become subject to an assortmen
plasma instabilities. Magnetic reconnection then sets
leading to the local release of magnetic energy and rec
figuration of the magnetic field in and around the dissipat
1063-651X/2002/66~5!/056111~10!/$20.00 66 0561
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sheets. Order-of-magnitude estimates of the energy rele
by such dissipative events are around 1024 erg, about nine
orders of magnitude smaller than a typical large solar fla
Thus the name ‘‘nanoflare’’ was coined by Parker@2#, who
moreover conjectured that the collective energy released
the ensemble of nanoflares continuously occurring throu
out the magnetized corona is a sufficient energy input
coronal heating.

Although it was not originally emphasized in Parker
coronal heating model, his picture of an externally stress
complexly tangled coronal magnetic field incorporates all
quired ingredient for a self-organized critical~SOC! ava-
lanche model:~1! an open physical system driven by slow
external forcing;~2! subject to a self-stabilizing threshol
instability; and~3! leading to localized redistribution of a
associated dynamical variable@4,5#. The dissipation of the

FIG. 1. Buildup of tangential discontinuities~sites labeled ‘‘A,’’
‘‘ B,’’ etc., on right panel! in response to boundary forcing of a
initially uniform magnetic field~left panel!, as envisioned within
Parker’s conjecture of coronal heating by nanoflares. The struc
on the left panel is an idealized representation of a straighte
coronal magnetic loop anchored in the solar photosphere, the l
corresponding to the upper and lower bounding ‘‘plates’’~see text!.
Reconnection-mediated dissipative events at siteC affect the mag-
netic field at neighboring sites (A,B,D,E), any of which in turn
possibly undergoing dissipative reconfiguration, leading to an a
lanche of dissipative events cascading through the system.
©2002 The American Physical Society11-1
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small current sheets~e.g., site ‘‘C’’ on Fig. 1!, which Parker
associates with nanoflares, can alter the physical condit
at neighboring current sheets~sitesA, B, D, andE!, possibly
triggering further dissipative events at these locations, an
on across the whole stressed coronal structure. Park
physical picture can thus be readily reinterpreted as a gen
avalanche model for solar flares of all sizes.

Inspired by Parker’s nanoflare picture, as well as the c
sical SOC numerical sandpile models@6,7#, Lu and co-
workers have developed a sandpilelike SOC avalan
model applicable to solar flares~@8,9#, hereafter Lu-Hamilton
91 ~LH91! and Lu-Hamilton-McTiernan-Bromund~LHMB !,
respectively; see also Refs.@4,10#!. In their models the dy-
namical variable is some measure of the magnetic field
fined on a lattice, and the model differs from the ‘‘canonica
sandpile models in defining its stability criterion in terms
the fieldcurvature~more on this in Sec. II below; for a recen
review, see also Ref.@11#!. Although it belongs to a differen
universality class@12#, this variation of the sandpile mode
behaves much like the better-known height- or gradie
triggered versions of the sandpile model, in that it is na
rally driven to a self-organized critical state characterized
avalanches with a power-law size spectrum.

The basic LH91/LHMB avalanche model has met w
remarkable success in reproducing the observed statis
properties of solar flares. The power-law form of the fr
quency distribution of observed flare parameters arises n
rally from the self-similarity characterizing the avalanchi
process in the SOC state. Moreover, most logarithmic slo
predicted by the model are in reasonable agreement
their observationally inferred counterparts@9,11,13,14#. For
the present, the most serious discrepancy is the power
index of the frequency distributions for the flaring area; t
model power-law distribution is significantly flatter than o
servations@15#. While these most recent results pose a s
ous challenge to the nanoflare mechanism of coronal hea
the avalanche model inspired by Parker’s physical picture
photospherically stressed, complexly tangled coronal m
netic field remains a very promising explanatory model
flares, in general.

These successes motivate further exploration of the m
el’s behavior, and, in particular, on those aspects of
model that influence the power-law slopes of the size dis
butions of avalanche parameters. Various authors h
pointed out that the redistribution rules of the flare avalan
model amount to a transport of the dynamical variable a
to a diffusionlike process@10,16–18#. Since assorted high
order diffusion-type equations are well known to exhibit se
similar solutions characterized by self-similar avalanch
behavior~see, e.g.,@19–22#!, further exploration of the anal
ogy between the~discrete! avalanche model and~continuum!
high-order diffusive systems is warranted. This is the p
mary purpose of this paper. In Sec. II, we begin by reve
engineering a fourth-order continuum hyperdiffusion eq
tion, whose discretization by centered finite differences le
to update rules identical to the redistribution rules of t
LH91 avalanche model. We then perform a von Neuma
stability analysis of this hyperdiffusion equation. This allow
us to clarify some subtle behavioral differences between
05611
ns

so
r’s
ral

s-

e

e-
’

t-
-
y

al
-
tu-

es
th

w

i-
g,
f

g-
r

d-
e
i-
ve
e
n

-
g

-
e
-
s

n

e

LH91 and LHMB versions of the solar flare avalanc
model. In Sec. III, we carry out a dynamical renormalizatio
group ~DRG! analysis of our hyperdiffusion equation an
determine the invariants of the DRG transformation. Then
Sec. IV, these invariants are used to derive the power-
slopes of several quantities and these slopes are compar
the results from the avalanche models. The good agreem
found therein suggests that our derived continuum hyper
fusion has indeed ‘‘captured’’ the essence of the spatia
discrete avalanche model. We conclude in Sec. V by spe
lating on the possible connections between the hyperdi
sive threshold-triggered transport and magnetic reconnec
in the high electrical conductivity, magnetically dominate
coronal plasma.

II. CONTINUUM LIMIT OF THE
CURVATURE-TRIGGERED

AVALANCHE MODELS

As with most sandpile models, the LH91~and LHMB!
avalanche model employs a stability criterion and a redis
bution rule to evolve a field variable defined on a discr
lattice, subject to the action of a random driver operat
only when the system is not avalanching~the so-called slow
driving limit!. However, and in contrast to the classical san
pile model, the stability criterion is defined in terms of th
local curvatureof the field, rather than its height or gradien
For a scalar fieldA defined on a one-dimensional lattice, th
stability measure is thus expressed in terms of

DAi
n[Ai

n2
1

2 (
j 5 i 61

Aj
n . ~1!

If uDAu at nodei is larger than a prespecified critical valu
Ac , thenA will redistribute according to

Ai
n115Ai

n2
2

3
DAi

n , ~2a!

Ai 61
n115Ai 61

n 1
1

3
DAi

n , ~2b!

in the LH91 modeling framework. The totalA is conserved
in the process of the redistribution, and the local curvat
DAi becomes 0 after the redistribution.

According to this redistribution rule, and under the a
sumption of synchronous nodal updating, each node is s
ject to three individual increment/decrement operations i
region where contiguous nodes are avalanching:

Ai
n115Ai

n2
2

3
DAi

n1
1

3
DAi 11

n 1
1

3
DAi 21

n . ~3!

Let An[@Ai
n#, so that Eq.~3! can be expressed in the equiv

lent matrix form

An112An52
2

3
@S#@S#An, ~4!

where
1-2
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FIG. 2. Two snapshots of the scalar nod
field A in a one-dimensional LH91 avalanch
model run. The system rapidly becomes unsta
shortly after it begins avalanching, and long b
fore reaching the SOC state which here is ch
acterized by a parabolic profile inx as shown by
the dotted line in panel~a!. Panels~a! and~b! are
200 iterations apart. The model was initialize
with A50 at all nodes, and driven with random
increments uniformly distributed in the rang
@20.4, 0.6#, with the stability threshold set atAc
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@S# i , j5d i , j2
1

2
d i , j 112

1

2
d i , j 21 , ~5!

andd i , j is the Kronecker delta. Designate the spatial dim
sion asx and the node interval as the unit lengthDx51, then
@S# is the second-order centered finite difference operato
21/2(]2/]x2). Equation~4! is then the time-forward differ-
encing integration of the hyperdiffusion equation

]A

]t
52k

]4A

]x4 , ~6!

with k51/6 and a unit ‘‘time step’’Dt51. Therefore, re-
peated application of Eqs.~2! in an avalanching portion o
the lattice is equivalent to a finite difference integration
the hyperdiffusion equation~6!.

Carrying out a standard von Neumann stability analy
@23#, on Eq.~4!, yields the following amplification factor~p!
for this scheme:

p5124k
Dt

Dx4 ~coskDx21!2. ~7!

For unit temporal and spatial intervals andk51/6, maxupu
55/3. Therefore, the finite difference~4! is unconditionally
unstable. This has been verified in our numerical experim
using LH91, as shown in Fig. 2. The parabolic curve~dotted!
in the plot is an approximation to theA field in the SOC state
obtained from LHMB, where the threshold is set to the sa
value as in this LH91 model (Ac57). It is seen from Fig. 2
that LH91 becomes unstable shortly after it begins avalan
ing and the system is still far from the SOC state. This n
merical instability can be easily corrected by reducing
diffusion coefficient from 1/6 toa/6 (a,1), which is
equivalent to reducing the redistributed quantity@DA in Eqs.
~2!# by a factora. In view of Eq.~7! above,a should be less
than 3/4 to ensure stability. Numerical experiments using
LH91 formalism but with reduced redistribution were co
ducted, yielding now a stable algorithm and a solution bu
ing up to abona fideSOC state.

In the LHMB model, the stability criterion is the same
that in LH91, but the redistribution is reduced fromuDAu to
Ac . This is equivalent to multiplying a factorAc /uDAu,
which is less than 1 in avalanching regions, to the redist
uted quantity. The numerically stable behavior of the LHM
model is thus consistent with the above analysis. In fact,
introduction of this reduction factor makes the net adju
05611
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ment at each node interior of a contiguous avalanching
gion zero according to Eq.~3!. Therefore, in LHMB, all ad-
justments due to avalanching occur near the bound
between avalanching and nonavalanching regions.

In stable regions of the lattice, there is obviously no
distribution of A and thus Eq.~6! holds provided one set
k50. At the boundary between the avalanching and sta
regions, however, the above derivation needs to be mod
because the redistribution has a spatial dependence. A m
general form of Eq.~3! should thus be

Ai
n115Ai

n24k i
nDAi

n12k i 11
n DAi 11

n 12k i 21
n DAi 21

n ,
~8a!

k i5H ka if DA2.Ac
2

0 otherwise
, ~8b!

whereka is equal to 1/6 for the original LH91 formulation
Equations~8! can be formally viewed as a finite differenc
equation for

]A

]t
52

]2

]x2 k~Axx
2 !

]2A

]x2 , ~9!

wherek(Axx
2 ) indicates that the diffusion coefficientk is a

function of the value of local curvatureAxx
2 ~the absolute

valueuAxxu is not used because it may not be differentiabl!.
However, the subgrid feature ofk in Eq. ~8! is not given by
the avalanche model and is implicitly scale dependent.
further study the avalanche system in the continuum limit
is thus necessary toconstructa k that approximates the dis
crete step function~8b! ~e.g., a hyperbolic tangent function!.
As can be seen in later discussions, the detailed form ofk is
not important in studying the statistical features of the s
tem.

Equation~9! can also describe more general systems w
varying diffusion coefficients~varying redistribution! inside
avalanching regions, such as LHMB. For LHMB,k
}1/A(]2A/]x2)2 inside an avalanching region~but not near
its boundaries!, so the net diffusion there is zero. That th
two systems, modified LH91 and LHMB, can be describ
by the same equation is consistent with the fact that both
systems display SOC behavior with similar statistical fe
tures. Both model variations belong to the same universa
class, and the detailed form ofk(Axx

2 ) is largely irrelevant.
1-3
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Assuming thatk(Axx
2 ) is second-order differentiable wit

respect toAxx
2 , Eq. ~9! can be rewritten as

]A

]t
52k1

]4A

]x4 2k2

]2Axx
3

]x2 2k3

]2Axx
5

]x2 , ~10!

where k i are all functions ofAxx
2 . This equation thus de

scribes the diffusion of the first~linear!, third, and fifth
power of the curvature on a spatial scale of the order of
grid size~unit 1! for the avalanche model. Our goal, chara
teristic of the study of critical phenomena, is to derive t
large-scale statistical features of the system and the sca
behavior ofA andk i from Eq. ~10! that describes thelocal
behavior of the avalanching system. The form of the eq
tion will be the same in the process of scale transformat
while the details~i.e., higher wave number components! of
the coefficients are irrelevant. For example, the exact di
sion coefficient can be highly variable among the latt
grids and between time steps in the avalanche model. H
ever, the associated high wave number and high freque
components will be eliminated in the process of coarse gr
ing and thus become irrelevant for the study of the lar
scale behavior. For this study, we will focus on the cu
nonlinear term, study its correction to the hyperdiffusi
term, and omit the fifth-order nonlinear term. With these co
siderations and also taking into account the random driv
of the system, the following equation can be constructed
represent the curvature-triggered avalanche system in
continuum limit:

]A

]t
52n

]4A

]x42l
]2Axx

3

]x2 1FR , ~11!

wheren is the hyperdiffusion coefficient andl is the nonlin-
ear coupling coefficient;FR is a random driving that will be
defined in spectral space in the following section. It sho
be noted here that, in the avalanche models~LH91 and
LHMB !, the mean~dc component! of the random driving is a
nonzero constant so that a mean field builds up. It is cha
teristic of these systems that a statistical equilibrium
reached after a certain number of iterations when the st
05611
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tical mean of the total ‘‘energy’’ of the system becomes
constant and the overall curvature of the system rema
close to the critical valueAc . All of the following analyses
will be based on SOC lattice solutions having reached
statistical equilibrium.

III. DYNAMICAL RENORMALIZATION-GROUP
ANALYSIS OF THE SYSTEM

Equipped with Eq.~11!, we hope to understand the sel
organized critical behavior of the avalanche models LH
and LHMB by analyzing the critical dynamics of its con
tinuum limit. As mentioned in Sec. I, the various power-la
indices may be related to the invariants of DRG transform
tion of the system. In this section, we will determine t
invariants in the DRG transformation of Eq.~11!.

Before the DRG analysis, it is necessary to conduct o
more transformation on Eq.~11! to remove the second-orde
derivative of the cubic nonlinear term, so that the pertur
tive calculation of the nonlinear terms could be carried o
conveniently. To achieve this transformation, we ta
second-order derivatives with respect tox of both sides of
Eq. ~11! and replaceAxx with a new field variableB. Equa-
tion ~11! then becomes

]B

]t
52n

]4B

]x42l
]4B3

]x4 1FRxx ~12!

with B[Axx . On local scales, there should be extra ter
with first-and second-order derivatives ofn and l on the
right-hand side~rhs! of the equation. However, only th
small wave number and low frequency components are
interest in the DRG analysis, and it is assumed that the
rivatives of n and l are relatively small and consequent
dropped from the equation. An additional benefit of th
transformation is that the current random driving termFRxx
is now free of any dc component.

Following the procedures prescribed by Refs.@24# and
@25# @Foster-Nelson-Stephen~FNS! hereafter#, the DRG
analysis is carried out in spectral space. First, Eq.~12! is
Fourier transformed with respect tox and t and can be writ-
ten as
2 ivB̂52nk4B̂2lk4E
k1,2v1,2

B̂~k1 ,v1!B̂~k2 ,v2!B̂~k2k12k2 ,v2v12v2!2k2 f̂ ~k,v!, ~13!
n
ou-

nti-
ed
or equivalently as

B̂~k,v!52G~k,v!k2 f̂ ~k,v!2G~k,v!lk4

3E
k1,2v1,2

B̂~k1 ,v1!B̂~k2 ,v2!

3B̂~k2k12k2 ,v2v12v2!, ~14!

whereG is the propagator
G~k,v!5
1

2 iv1nk4 , ~15!

where k1,2 and v1,2 indicate the domain of integration o
wave numbers and frequencies stemming from mode c
pling due to the cubic nonlinearity of Eq.~12!, and the hat
denotes the Fourier transform of the corresponding qua
ties. The ac component of the random driving is now defin
as
1-4
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^ f̂ ~k,v! f̂ ~k8,v8!&52pDk2rd~k1k8!d~v1v8!,
~16!

whereD measures the strength of the random driving cor
lation. For the uniform random driving used in the prese
avalanche models,r 50. However, in the models the rando
driving is applied only during periods when the system is
avalanching, which creates a separation of time scales
tween avalanching and driving. The random driving defin
here is convenient for our analysis, but it imposes a cer
limit on the frequency range over which the analysis is
plicable, as further discussed below.

The DRG analysis is primarily concerned with the lo
wavelength mode (k→0) behavior of the system in the pro
cess of coarse graining. In the Fourier transform above, th
is a short wavelength~large k! cutoff at a nominal wave
numberL. In the process of coarse graining, the system fr
L to e2 lL ( l .0), one needs to examine the correctio
introduced by the components in the wave number s
e2 lL,uku,L on the coarse grained system, specifically,
corrections to the propagator, the nonlinear coupling coe
cientl, and the random driving correlation, in wave numb
spaceuku,e2 lL. The corrections to these quantities can
calculated perturbatively using a diagram method similar
those used in FNS and in Ref.@26# ~HK92 hereafter!. The
elements of the diagrams and the diagram equivalence o
~14! are defined in Fig. 3. Equation~14! is, however, cubic
nonlinear rather than quadratic nonlinear as in FNS
HK92, and the so-called first Kraichnan-Wyld approximati
has been used to determine the perturbation expansion
lowing Ref. @27#. This is shown in Fig. 4. We note that th
vertex equation@Fig. 4~b!# is an approximation rather tha
being accurate to all orders as in HK92. This is because
~12! is not Galilean invariant, although Eq.~11! before the
derivative transformation is. Diagram equations in Figs. 4~a!
and 4~b! correspond to

l I5l, ~17a!

DI5D. ~17b!

FIG. 3. Definition of the diagram elements. The diagram expr
sion of Eq.~14! is also given.
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The intermediate propagatorGI can be obtained from dia
gram equation in Fig. 4~a!,

GI5
1

G2113lMk4 5
1

2 iv1~n13lM !k4 , ~18!

whereM is the mean square displacement

M5
1

~2p!2 E
e2 lL

L

dkE
0

`

dv
k4^ f̂ ~k,v! f̂ * ~k,v!&
v21~n13lM !2k8

5E
e2 lL

L

dk
Dk2r

n13lM
, ~19!

and the* denotes complex conjugation. Equation~19! can be
solved forM, after which the intermediate diffusion coeffi
cient n I can be found from Eq.~18!,

n I5H nS 113r2
e~r 21!l21

r 21
L2r 11D if rÞ1

n~113r2l ! if r 51

, ~20!

where

r5
AlD

n
, ~21!

and Eq. ~20! is obtained by Taylor expanding one of th
exact quadratic solutions~the other one corresponds to a ne
zero solution! and retaining the second order inr. Note that
the parameterr is akin to a Reynolds number and is th
dimensionless control parameter of the problem. Equa
~20! also manifests the fluctuation-dissipation theorem
this system, with the diffusivity modified by the rando
driving through nonlinear coupling.

The wave numberk should then be rescaled in such a w
that the wave number ‘‘sphere’’ 0,uku,e2 lL is rescaled
back to 0,uksu,L, and in physical space this correspon
to x5elxs . With this rescaling, we assume that the timet
and the fieldB scale as

t5ec1l ts , ~22a!

B5ec2lBs , ~22b!

or equivalently in spectral space

-

FIG. 4. Diagram expression of the first Kraichnan-Wyld a
proximation;~b! and ~c! simply indicate that there is no renorma
ization of either the force coefficient or the vertex function, t
latter by assumption in keeping with the case where Galilean inv
ance prevails.
1-5
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v5e2c1lvs , ~23a!

B̂5e~c11c211!l B̂s , ~23b!

and the random forcingf̂ scales as

f̂ 5e@~r 111c1!/2# l f̂ s . ~24!

Rescale Eq.~13! using Eqs.~23! and~24! and, by balancing
the dimensions, the scaling ofn, l, andD can be found to be

ns5ne~c124!l , ~25a!

ls5le~c112c224!l , ~25b!

Ds5De~c122c21r 25!l . ~25c!

The corresponding recursion relations can then be found
combining Eqs.~17!, ~20!, and~25!. For rÞ1,

nR5ne~c124!l S 113rR
2 12e2~r 21!l

r 21 D , ~26a!

lR5le~c112c224!l , ~26b!

DR5De~c122c21r 25!l . ~26c!

HererR
25r2e(r 21)l from Eqs.~21! and~25!. BecauseL is a

reference wave number, it has been set to 1 here for co
nience and without loss of generality. The differential rec
sion relations forl andD are thus

1

lR

dlR

dl
5c112c224, ~27a!

1

DR

dDR

dl
5c122c21r 25. ~27b!

From Eqs.~21!, ~26a!, and~27!, the recursion relation forrR
is found to be

drR

dl
5rRS e

2
23rR

2 D , ~28!

wheree5r 21. The form of this equation is equivalent to th
coupling constant equation of modelA in FNS, though heree
is a function of the random driving power index rather th
the spatial dimension~cf. Refs.@28#, @29#!.

Therefore,r c51 is the crossover index that divides th
system into two universality classes, below whichrR has a
stable fixed point at 0, and above the stable fixed point i
Ae/6. For the case wherer 51, it is easy to show that the
recursion relation is

drR

dl
523rR

3. ~29!

The stable fixed point is thus also at zero though the
proaching speed is proportional to 1/Al . The recursion rela-
tion for nR can also be determined,
05611
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1

nR

dnR

dl
5H c124 if r<1

c1241
e

2
if r .1

. ~30!

With the recursion relations ofnR , lR , DR , andrR , it is
possible to compare the behavior of the diffusion term, n
linear term, and the random driving in the process of DR
transformation for the two universality classes. With its ro
analogous to a Reynolds number,rR’s attractor at 0 when
e,0 in DRG transformation indicates the increasing dom
nance of the diffusion termnR , while the nonlinear term and
the random driving are ‘‘absorbed’’ into the diffusion term
Let lR andDR remain fixed in the DRG transformation, the
the scaling exponentsc1 andc2 can be determined from Eqs
~27!,

c1542
e

2
, ~31a!

c25
e

4
. ~31b!

Then from Eq.~30! it is found thatnR increases exponen
tially at the rate2e/2 whene,0, confirming the increasing
dominance of the diffusion term. On the other hand, the r
dom driving becomes critically more dominant in infrare
(k→0) whene.0, andrR’s attractor atAe/6 indicates that
the diffusion term becomes comparable with the other ter
This is again confirmed by Eq.~30!, with (1/nR) (dnR /dl)
50, whene.0 using the exponentc1 in Eq. ~30!. As men-
tioned before, the random driving used in LH91 and LHM
corresponds approximately to a spectrum withr 50, and we
will thus focus on the universality classe,0 in the follow-
ing discussions.

IV. COMPARISONS BETWEEN ANALYSIS AND
AVALANCHE MODEL

In this section, quantities predicted by the DRG analy
will be compared with those calculated from the avalanc
models. The statistical features of the modified LH91 a
LHMB are very similar, and only results from the latter a
presented in the discussion.

We first examine the wave number spectrum of the sc
field A. Figure 5 is the power spectrum ofA from the ava-
lanche model of LHMB. The spectral slope is24 at lower
wave numbers. This is the value expected for a linear fou
order hyperdiffusion equation with a random driving and
consistent with the derived avalanche~11! in the continuum
limit with a dominant hyperdiffusion term. On the othe
hand, the power spectrum of the ‘‘perturbation’’ to the line
diffusion field may be conveniently checked by looking
the power spectrum of the transformed fieldB, because the
linear diffusion component ofA, a parabola, becomes a d
component ofB. From the scaling assumption~23b!, B̂ may
be written as
1-6
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B̂~k,v!5k2~c11c211!GBS v

kc1D , ~32!

whereGB is a scaling function. The wave number spectru
of B̂ at time t0 can be obtained by the inverse Fourier tran
form of Eq. ~32! with respect tov,

B̂~k,t0!5k2~c211!G̃B~ t0kc1!5k2~31r !/4G̃B~ t0kc1!,
~33!

whereG̃B is the Fourier integral ofGB , *GB(y)eiyt0kc1dy. If
the system is in statistical equilibrium,G̃B should be ap-
proximately independent of the sampling timet0 and thus
alsokc1. The power spectrum ofB then has an index of23/2
for r 50. Figure 6 shows the power spectrum ofB normal-
ized by k23/2 from LHMB. The flatness of the normalize
spectrum at larger wave numbers indicates that the ag
ment is good in that region. The smallest wave number sp
trum is subjected to a small wave number cutoff due to
finite size of the spatial domain.

We then calculate the frequency spectra of fall-off ene
and total dissipating energy, following HK92. According
Eq. ~11!, the flux ofA is

JA52n
]B

]x
2l

]B3

]x
. ~34!

FIG. 5. Wave number power spectrum ofA from a representa-
tive LHMB model run. The solution is computed for a on
dimensional scalar version of the LHMB avalanche model, defi
here on a 100-node lattice. Driving and threshold parameters a
Fig. 2.

FIG. 6. Wave number power spectrum ofB normalized byk23/2,
for the same solution as depicted in Fig. 5.
05611
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According to the analysis in preceding section,B;xe/4 and
n;x2e/2. Then the first term ofJA scales asx212e/4 and the
second term scales asx2113e/4. For e,0, the first term is
dominant in the DRG transformation andJA;xc3

[x212e/4. The fall-off energy can then be written as

JA
25x2c3gJAS t

xc1D , ~35!

wheregJA
is a scaling function. The spectral form ofJA

2 can
be found by the Fourier transform~35!,

ĴA
2~k,v!5k2~c112c311!GJAS v

kc1D . ~36!

The frequency spectrum atx0 ~e.g., boundary point! can then
be obtained by the inverse Fourier transform of this equa
with respect tok,

ĴA
2~v,x0!5v2@112~c3 /c1!#G̃JA

~x0v1/c1!, ~37!

whereG̃JA
is the Fourier integral of the scaling functionGJA

,

*y2(c112c311)GJA
(y2c1)eiyx0v1/c1dy. If the statistical feature

is assumed to be independent ofx0 ~e.g., same with those a
boundaryx050), thenG̃JA

may be considered as a consta

and the power-law index is equal to22/3, whenr 50. This is
in good agreement with the fall-off energy spectrum of t
avalanche models over the frequency number of 3000
20 000, corresponding to time steps of about 100–700
shown in Fig. 7.

The total energy dissipation can also be calculated by
tegratingJA

2 over the whole spatial domain. We employ th
same limited area approximation used by HK92:

E~v!5E
0

L

dxE
0

L

dx8E
0

L

dx exp@2 ik~x2x8!# Ĵa
2~k,v!

'E
0

L

dk
k2~c112c311!

11~kL!2 GJAS v

kc1D , ~38!

whereL is the size of the domain. Considering the low fr
quency cutoff due to the finite size of the domain~cf. Fig. 6!,
we assume that the main contribution of the integration
Eq. ~38! comes from higher wave numbers and (kL)2@1. In
fact, even for wave number 1 (k52p/L), the assumption is
already a good approximation because (kL)25(2p)2@1.
With this assumption, the integration above gives

E~v!5cEv2@112~c311/c1!#, ~39!

again the constantcE is from the integration of the scaling
function. Forr 50, the power index of the energy dissipatio
frequency spectrum is210/9. As can be seen from Fig. 8
this index agrees well with that obtained from the avalanc
models in the frequency range of frequency number 200
20 000 ~time steps of 100–1000!. This frequency range
where the continuum limit description is valid and the DR
analysis applies, as shown by these comparisons, co

d
in
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sponds to the interacting avalanche region as categorize
HK92. At higher frequencies~the single-avalanche region!
local dynamics becomes dominant and the DRG analysis
come invalid, while at lower frequencies~the discharge-
event region! the cutoff is associated with the finite size
the domain.

V. DISCUSSION AND CONCLUSION

This study has demonstrated that the curvature-trigge
avalanche models proposed in LH91 and LHMB are com
tationally equivalent to a randomly forced fourth-order h
perdiffusion system subjected to a threshold instability,
though LH91 is numerically unstable. The randomly forc
fourth-order hyperdiffusive equation is thus the continuu
limit of the avalanche models. With the equation in the co
tinuum limit, we are able to achieve a better physical a
analytical understanding of the avalanche models. The s
transformation invariants of the equation have been de
mined through the use of DRG analysis. The scaling ex
nents of the spectra of certain quantities, including the w
number spectra of scalar fieldsA andB and frequency spec
tra of the falling-off energy and dissipating energy, as well
the scaling of the diffusion coefficient and nonlinear co
pling coefficients, have been derived from the invariants a
are in good agreement with the corresponding quantities

FIG. 7. Frequency spectrum of fall-off energy in the sam
LHMB solution as in Figs. 5 and 6. Panel~a! shows the raw spec
trum, and panel~b! the same spectrum normalized byv22/3.
05611
by

e-

d
-

l-

-
d
le
r-
-
e

s
-
d
x-

tracted from the avalanche model results in the relevant s
tral range. This spectral range where the DRG is valid
constrained by the size of the domain on the small wa
number and lower frequency side and the size of the lat
grid on the large wave number and high frequency side. T
favorable comparison also provides rigorous support to
interpretation of the avalanche model in the continuum lim

We conclude this work by briefly discussing some po
sible links between the avalanche system and the mag
hydrodynamics~MHD! physics believed to be underlying th
flaring phenomenon. We start from the induction equatio

] tB5“3~v3B!1h¹2B, ~40!

and assume that we are in a regime strongly dominated
the magnetic field~i.e., strong MHD turbulence! which we
take asB05(0,0,B). In that regime, fluctuations vary mostl
in the perpendicular direction, hence we set]z[0. We evalu-
ate the Lorentz force and Ohm’s law with these hypothes
and express further that the velocity field results from
equilibration with the Lorentz force in the momentum equ
tion; integrating over time gives

v;t j3B, ~41!

FIG. 8. Frequency spectrum of energy dissipation in the LHM
avalanche model, for the same model run as in Figs. 5–7. Pane~a!
shows the raw spectrum, and panel~b! the same spectrum norma
ized byv210/9.
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wheret is a characteristic time of the~slow! evolution of the
velocity. Substituting this expression for the velocity field
the induction equation, and furthermore assuming that
pendicular variations are equivalent, i.e.,]x;]y;], leads to
a model equation that reads

] tB;B2]2B1]B]B21h]2B.

This is readily rewritten in the form

] tB;~B21h!]2B1]2B3. ~42!

We now need to compare this with the model~11!. Both
include a]2B3 term, but at first glance the first term on th
rhs of Eq.~42! is not comparable to the fourth-order term o
the rhs of Eq.~11!.

In an attempt to resolve this discrepancy, we turn to
theory of strong MHD turbulence~e.g., Ref.@30#!. In the
solar corona, the magnetic Reynolds number is extrem
high, and magnetic reconnection is thus likely to gener
turbulence. The linear part of the diffusion term,h]2B, can
be modified by introducing an eddy diffusivityh turb, the
latter computed using two-point closure formulations
strong isotropic~on average! MHD turbulence@30#. It was
found there that the only contribution from small-scale flu
tuations to dissipation of the large-scale magnetic field s
from the velocity field, averaged on small scales a
squared, namely

h turb;^v2&. ~43!

As argued above, in the strong field regime characteristic
the corona, the velocity field results from a balance with
Lorentz force and hence is proportional to the current, i.e.
small-scale gradients@see Eq.~41!#. The predominance o
small scales implies

] tB;]2B31h turb]
2B. ~44!

This is somewhat closer to Eq.~11!, but by all appearance
we are still short by two differentiation orders in the line
diffusive term. However, this term does turn out to be fou
order in a Fourier sense, because in Fourier space,h turb
;k2 @30#. This implies that the Laplacian in Eq.~44! be-
comes hyperdiffusive, because of the scale dependence
tained inh turb. This thus establishes a suggestive corresp
ld

. A
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dence, at least in Fourier space, between Eq.~11! and the
partial differential equations of MHD. Recent study by Di
mond and Malkov also suggests hyperdiffusion in the m
netic reconnection@34#.

We also note that the Lu-Hamilton interpretation of t
avalanche model for MHD in terms of curvature of the fie
is not to be taken too stringently. The model encompasse
Eqs.~41!–~44! with a turbulent resistivity coefficient involv-
ing the current itself in the strong field regime shows ho
important magnetic field gradients are, irrespective of th
being a signature of curvature or not. Indeed, in a stand
two-dimensional configuration, corresponding to reconn
tion events embedded in a strong background field as in
corona and as the lowest-order approximation to redu
MHD, neutral x points develop into x lines and curre
sheets have a tendency to be straight as shown in nume
numerical simulations@31–33#.

If taken at face value, what physical conclusions can
drawn from this correspondence? First and foremost, it
plies that the reconnection dynamics is dominated by
magnetic field@viz., Eq. ~41!#. Second, once reconnectio
does occurs, strong MHD turbulence rapidly sets in a
dominates transport processes in and out of the reconne
regions. Third, the hyperdiffusive~i.e., fourth-order! charac-
ter of field dissipation suggests that once reconnection
in, it is very efficient at dissipating the magnetic field even
the magnetic Reynolds number is very large. Conceptuall
least, these conclusions are all compatible with current
servational inferences and theoretical understanding of s
flares.
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